deformable mirrors from Boston Micromachines
    About Us    Contact Us
Shaping Light - Boston Micromachines blog on Adaptive Optics

Subscribe by Email

Your email:

Most Popular

Browse By Date

Browse By tag

Find us on...

About the Author

Michael Feinberg is the Director of Product Marketing at Boston Micromachines Corporation.  He has over 10 years of marketing and engineering experience in various technology fields.  He can be reached at mrf@bostonmicromachines.com  and welcomes any comments about the content presented herein.

 

Current Articles | RSS Feed RSS Feed

FAQ: BMC Deformable Mirror Reflectivity

Posted by Angelica Perrone on Fri, Dec 20, 2013 @ 08:00 AM
  
  
  
  
  
Over the past couple of months we have been receiving an assortment of questions in regards to our products. We thought it would be a good idea to share the more popular questions and answers as they stream in to keep everyone updated.

One question that tends to be asked quite often is the reflectivity our deformable mirrors can achieve. This depends on a couple of factors such as mirror coating, protective window AR coating and the wavelength of the light. 

Figure 1

We offer gold, aluminum and protected silver coating on almost all of our deformable mirrors. When selecting a coating, you should pay particular attention to the wavelength(s) of light you use. The BMC DM Coating Reflectivity chart to the right illustrates the reflectivity of each of our standard coatings.

Our standard windows with AR coating are BK-7.  We offer a few options, depending on which size mirror you select.  For our smaller DMs, we offer the standard coatings from Thorlabs as well as a few more versatile options.  You may choose either uncoated, 350-700nm, 650-1050nm or 1050-1620nm.  We also offer a 400-1100nm window and 550-2400nm, the latter for an additional cost.  For our larger DMs, various coating options are available. We do offer customizable options for an extra fee, so please contact us with your specifications if you require this.

The N-BK7 Broadband Antireflection Coatings chart from Thorlabs below depicts the percentage of  light lost for each AR coated window. Similar curves are available for our other coatings.Antireflection coatings Thorlabs
               

If you are looking for additional information on our standard windows, please visit our friends at Thorlabs online. If you have any further questions on the reflectivity of our mirrors, click here to send us an e-mail or visit us online at www.bostonmicromachines.com

2 Comments Click here to read/write comments

Improved Retinal Imaging Resolution with the AOSLO

Posted by Angelica Perrone on Fri, Dec 06, 2013 @ 02:30 PM
  
  
  
  
  

It has been quite some time since our last blog post due to a great deal going on at BMC! Alongside some new product releases, we recently made a few adjustments and updates to our ophthalmic imaging instrument, the Adaptive Optics Scanning Laser Ophthalmoscope (AOSLO) which we are releasing early next year.

This next-generation instrument allows in vivo retinal imaging on a cellular level and is currently undergoing beta testing at the Beetham Eye Institute at Joslin Diabetes Center, led by Dr. Jennifer Sun and her team. There it is being used to directly quantify features such as cone density, microaneurysm size and measure blood flow through the microvasculature in the retina. By pairing a Scanning Laser Ophthalmoscope (SLO) with advanced Adaptive Optics, it offers the advantage of imaging the retina at a resolution 2-3 times that of a standard SLO. 

The AOSLO is also capable of measuring various properties of retinal cone physiology. Due to its enhanced imaging and software, it enables evaluation of the following attributes:

  • Cone Density
  • Nearest Neighbor Distance
  • Voronoi Tessellation Tile Area
  • Effective Radius
  • Packing Factor

The AOSLO’s ability to measure such features allows early stage detection of visual decline due to diabetes. This can be identified by the decrease in cone regularity, cone mosaic changes, cone reflectance and a decrease regularity of cone spacing. This function of the AOSLO can help determine early treatment plans for patients and generate further investigative studies.

                When testing out the AOSLO at Joslin, we found something very interesting out about our CEO, Paul Bierden. The pictures below depict his own retina, discovering that he has a microaneurysm! This was unexpected news, since normally it would be undetectable by any other retinal imaging systems. 30% of the microaneurysms imaged using the AOSLO at Joslin were not visible in fundus photos. The AOSLO is able to accomplish this by evaluating the vascular and neural retinal planes in vivo with cell-scale resolution. The pictures below also point out the microaneurysm attributes that can be measured. They are:

  • DimensionMicroaneurysm measurmens
  • Presence of lumen clot
  • Wall reflectivity

 

Lastly, the AOSLO is able to measure small-vessel blood flow. This is done with the help of its enhanced imaging qualities, instrument optimization and post-processing software. By stopping a horizontal scan over a blood vessel, it can measure the blood velocity by tracking the moving erythrocytes over a scanning line. With this information, researchers can produce a blood velocity profile for retinal vessels. See the video below to see how it’s done!

If you have any interest in using the AOSLO, let us know!  Please give us a call and let us know about your research. We are accepting orders for the new instrument and are open to collaborative grant applications to secure funding. If you are interested in seeing the AOSLO in action, we are setting up appointments now for the next few months.  We hope to hear from you soon!

0 Comments Click here to read/write comments

All Posts

 
Copyright © Boston Micromachines Corporation 2010               Privacy Policy    Legal      Contact Us