deformable mirrors from Boston Micromachines
    About Us    Contact Us
Shaping Light - Boston Micromachines blog on Adaptive Optics

Subscribe by Email

Your email:

Most Popular

Browse By Date

Browse By tag

Find us on...

About the Author

Michael Feinberg is the Director of Product Marketing at Boston Micromachines Corporation.  He has over 10 years of marketing and engineering experience in various technology fields.  He can be reached at mrf@bostonmicromachines.com  and welcomes any comments about the content presented herein.

 

Current Articles | RSS Feed RSS Feed

Adaptive Optics Correcting for Highly Scattering Media: A New Approach

Posted by Angelica Perrone on Thu, May 15, 2014 @ 11:05 AM
  
  
  
  
  

Scattering media can be a real headache if you are looking to achieve high-resolution, deep tissue in vivo images. Without adaptive optics, do not anticipate having the optical control you need to correct for scattering media effectively. But no need to worry, we have a solution.test bed S MPM resized 600

Since standard Multiphoton Microscopy just wasn’t cutting it, the Cui Lab at Howard Hughes Medical Center pioneered a new technique that Boston University also recently developed, called Superpentation Multi-Photon Microscopy (S-MPM). Each group uses a different optimization scheme but the outcome is the same: The enhanced technique permits active compensation of wavefront aberrations in a scanning beam path through the use of a BMC MEMS Spatial Light Modulator (SLM), allowing for increased depth imaging.

Developed at Boston University and commercialized by Boston Micromachines, the enabling components are the Kilo-SLM and the high speed S-driver. With these components incorporated into the test bed shown in Fig. 1, images of 1 µm diameter fluorescent beads through 280 µm thick mouse skull can be achieved at depths of about 500 µm. The SLM corrected low order spherical aberrations as well as higher order scattering effects. Signal enhancement with higher resolution and contrast were improved by 10x-100x. The optimized SLM phase improves imaging over a field of view of 10-20 µm for samples tested to date with techniques currently in the works to improve upon this.

With 600 nm of stroke and 60 kHz of maximum frame rate, the Kilo-S System comes in a variety of options to fit your needs at a much reduced cost over our standard 1000 channel system. Contact us today for more information on our Kilo-S or any of our other systems! 

0 Comments Click here to read/write comments

Improved Two Photon-Imaging Through Laser Pulse Compression with the Linear Array DM

Posted by Michael Feinberg on Fri, Dec 07, 2012 @ 08:05 AM
  
  
  
  
  

In our last blog post (Fast and Precise Laser Pulse Compression with the Linear Array DM) we discussed research being done in the Cui Lab at HHMI’s Janelia Farm Research Campus that used our Linear Array DM for laser pulse compression.  In part two we examine a two photon fluorescence microscopy project led by associate Reto Fiolka at Janelia Farm that illustrates the use of the Linear Array’s potential as a pulse compressor for imaging applications using the phase resolved interferometric spectral modulation (PRISM) optimization technique.

The Linear Array pulse compressor setup was used to restore the laser pulse to its transform limited state, thus improving the ability to excite fluorescence by two photon absorption. A sample consisting of 10 micron diameter fluorescence beads (emission: 465 nm) was prepared and spread on a cover-slip. The laser beam first propagated through the pulse compressor and was subsequently focused on the sample using a 20X NA 0.5 Nikon objective. A 2D image was obtained by translating a motorized sample stage. Without spectral pulse shaping, only a weak fluorescence signal could be obtained (See figures a and c). Since the objective adds significant additional dispersion to the laser pulse, the spectral phase correction that had been determined previously using the photodiode could not be used. Therefore PRISM optimization was repeated using the fluorescence signal coming from the beads itself as a feedback signal.

Janelia Farm’s results show a dramatic increase in fluorescence signal for the optimized spectral phase (see figures b and d). The signal strength was increased by a factor of ~6.5

twophoton microscopy resized 600

 

According to Fiolka, “The tested device represents a promising alternative to liquid crystal displays, since the MEMS technology enables high filling factor, high efficiency and operation speed, exceptional phase stability and accuracy and can be used over a very broad wavelength spectrum.”

We're very excited about these results and we are currently working with other groups interested in reproducing these results on tissue samples.  Thanks again to Dr. Fiolka and the Janelia Farm group for their efforts in improving two photon imaging techniques!!

More details can be found in our Linear Array white paper which includes an application overview of this exciting project.  You can also link to the research directly using the links to the Cui Lab and the scientific publication above.

0 Comments Click here to read/write comments

All Posts

 
Copyright © Boston Micromachines Corporation 2010               Privacy Policy    Legal      Contact Us