deformable mirrors from Boston Micromachines
    About Us    Contact Us
Shaping Light - Boston Micromachines blog on Adaptive Optics

Subscribe by Email

Your email:

Most Popular

Browse By Date

Browse By tag

Find us on...

About the Author

Michael Feinberg is the Director of Product Marketing at Boston Micromachines Corporation.  He has over 10 years of marketing and engineering experience in various technology fields.  He can be reached at mrf@bostonmicromachines.com  and welcomes any comments about the content presented herein.

 

Current Articles | RSS Feed RSS Feed

Further focus at CLEO 2013

Posted by Michael Feinberg on Tue, Jul 09, 2013 @ 11:54 AM
  
  
  
  
  

It's been a few weeks since we returned frocleo resized 600m the Conference on Lasers and Electro-Optics 2013 and now that we're settled back in to the daily routine, I thought I would give some highlights on the show. I was happy to be joined this time by our new Marketing and Communications Specialist, Angelica Perrone, who did a great job navigating the complex photonics market for the first time.

While the conference seems to be chugging along at a nice pace, the tradeshow has most definitely become a smaller venue.  We were once again hosted by our strategic partner, Thorlabs (thanks, again guys!) and being in such a central location on the floor, we were able to get a good flavor for the pace of the show.  Here are my thoughts:

Little, different, yellow, better

Anybody get that Nuprin reference?  Anybody? See what I 'm talking about here.

Okay, so it's not yellow (although yellow lasers are cool), but the show is definitely getting smaller.  I mentioned to a colleague that since the show is in San Jose for the second year in the row, it seemed like the barriers on either end of the tradeshow floor had moved in just a bit. 

As far as different, the show is not like other photonics shows in that it is pretty focused in its applications.  While there were some interesting talks on microscopy, this was a small portion of the material, with most others focussing on more laser-centric applications, as the title of the conference implies. 

As far as better, I would say that for BMC, it was most definitely better for our new products:  The Reflective Optical Chopper(ROC) and the Linear Array DM.  We recieved more interest in these products over our legacy deformable mirror technologies. This is exciting for me as a product marketer and salesperson and even moreso as a member of a company that is always looking for new avenues for our technology. We see the ROC being useful for users who span from pure laser scientists to imaging engineers interested in chopping a beam at high speed with either a constant or variable duty cycle.  The linear array has already proven useful in pulse shaping applications as described in our whitepaper, which is available for download here.  Both products are available for purchase now.

Our Wavefront Sensorless Adaptive Optics Demonstrator for Beam Shaping (WSAOD-B)also generated some buzz. More and more applications which require wavefront correction are surfacing and need a solution without a wavefront sensor.

In all, it was a good show that has given me and my team work to do as we explore more exotic applications for our technology.  I look forward to joining the show again next year and I hope to connect with all of you again in the near future!

For more information on the products mentioned above, please visit our website and download our whitepapers.

1 Comments Click here to read/write comments

Fly with me: UAV image enhancement

Posted by Michael Feinberg on Tue, Mar 30, 2010 @ 09:59 AM
  
  
  
  
  

MEMS deformable mirror(MEMS DM) technology UAV applies adaptive opticsis right now at the point where a high-volume application could propel the devices from being installed in very specialized setups to being a standard component in production equipment. The best avenue to jump this figurative chasm is to find applications where a moderate number of devices is required, but price sensitivity is low. One such application is advanced surveillance systems for unmanned aerial vehicles (UAVs).
The use of a camera on a UAV provides invaluable information in terms of reconnaissance applications and confirming location. In order to improve the imaging capability, an adaptive optics system containing a deformable mirror, high-speed wavefront sensor and control system could be used to remove atmospheric aberrations between the camera and objects of interest. With this in mind, four major issues need to be addressed:


1) Nature of the aberrations
Obtaining high resolution images from a UAV camera is a challenge due to the atmospheric turbulence around the UAV as it flies at high speeds past its target. This turbulence is separated into two categories: turbulent airflow near the camera due to the high speed of the UAV and normal atmospheric variations in temperature in the extended distance beyond the turbulent layer of air. There are no doubt a number of people currently working on this problem (both out in the open and covertly) to increase the usefulness of UAVs. Recent discussion took place at the Photonics West Conference in San Francisco in January of this year as part of the Free-Space Laser Communication Technologies XII and Atmospheric and Oceanic Propagation of Electromagnetic Waves IV tracks (Conferences 7587 and 7588, respectively). Click here and here to see abstracts of the sessions.


2 and 3) Portability and Low Power
The system would have to be portable and have low-power to even be considered for use. MEMS DMs are capable of both, with individual channel operational power in the microAmps and drive electronics which can fit in the mid- to large-sized UAVs in operation today. Work is in progress at Boston Micromachines to further reduce the size of the electronics through a recently-awarded SBIR to explore multiplexing of MEMS DM drive electronics. (See Press Release here)


4) High Speed
Finally, the device would have to be capable of operating at high speeds. MEMS DMs have been demonstrated to operate at speeds of 60kHz and recent developments at BMC have produced a driver that can operate up to 400kHz.


We look forward to discussions going forward, especially around efforts to model and correct for the aberrations in the optical path, and hope that we can one day make an impact on this challenging field.

2 Comments Click here to read/write comments

All Posts

 
Copyright © Boston Micromachines Corporation 2010               Privacy Policy    Legal      Contact Us